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Abstract

The International ._tandard (SI) second of the atomic clock was calibrated to match the

Ephemeris Time (ET) second in a mutual four year effort between the National Physical Laboratory
(NPL) and the United States Naval Observatory (USNO). The ephemeris time is "clocked" by

observing the elapsed time it takes the Moon to cross two positions (usually occultation of stars

relative to a position on Earth) and dividing that time span into the predicted seconds according to

the lunar equations of motion. The last revision of the equations of motion was the Improved Lunar

Ephemeris (ILE), which was based on E. W. Brown's lunar theory. Brown classically derived the

lunar equations from a purely Newtonian gravity with no relativistic compensations. However, ET is
very theory dependent and is affected by relativity, which was not included in the ILE. To investigate

the relativistic effects, a new, noninertial metric for a gravitated, translationaUy accelerated and

rotating reference frame has three sets of contributions, namely (1) Earth's velocity, (2) the static

solar gravity field and (3) the centripetal acceleration from Earth's orbit. This last term can be

characterized as a pseudogravitational acceleration. This metric predicts a time dilation calculated
to be -0.787481 seconds in one year. The effect of this dilation would make the ET timescale

run slower than had been originally determined. Interestingly, this value is within 2 percent of

the average leap second insertion rate, which is the result of the divergence between International
Atomic Time (TAI) and Earth's rotational time called Universal Time (UT or UTI). Because the

predictions themselves are significant, regardless of the comparison to TAI and UT, the authors will

be rederiving the lunar ephemeris model in the manner of Brown with the relativistic time dilation

effects from the new metric to determine a revised, relativistic ephemeris timescale that could be

used to determine UT free of leap second adjustments.
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Introduction

Time is measured by counting cycles or fractions of cycles of any physical repeatable phe-
nomenon. The oldest method is based on the rotation of the Earth to define the timescale

called Universal Time (UT or UT1 to be more specific). The actual solar day varies by the

angles sunlight strikes the Earth as it moves in its inclined elliptical orbit. Through mathematics,

the concept of a mean solar day can be established in terms of the sidereal day that Earth

takes to rotate 27r radians. As the Earth's rate of rotation was discovered to vary somewhat,

a more precise time standard was developed by monitoring the motion of the heavenly bodies

and comparing them to the theory of motion for that body. Similar to hands of a clock passing

the numbered positions on the clockface, the observed position or ephemeris of a heavenly

body against the stellar background determines the timescale, called Ephemeris Time (ET).

Unfortunately, ET is very theory dependent. The actual Ephemeris Time of an event was

determined well after it occurred due to postprocessing of the observations.

In the mid 1950s, precise atomic frequency standards were developed for ultrastable, long term

operation. The atomic vibrations would be monitored so that the number of elapsed cycles

could provide the conversion to establish an atomic clock. The primary atomic timescale is

currently the International Atomic Time (TAI). The length of the atomic SI second was defined

by Markowitz et al. (1958) by an observationally determined value of the ET second obtained

from the Improved Lunar Ephemeris (ILE). However, a timing problem surfaced when it was

seen that UT ran at a different rate than TAI. Based on conversations with personnel at the

US Naval Observatory (USNO) into the derivation of the ILE, it was determined that relativity

effects were not incorporated into Brown's hmar theory. Preliminary relativity calculations

have yielded a time dilation effect in the lunar ephemeris with a value that is within 2% of

the observed divergence between UT and TAI. Work is ongoing to rederive a relativistic hmar

ephemeris and obtain a relativistic ET timescale, which will be compared to the TAI and UT
timescales.

Development of the Ephemeris and Atomic Timescales

The International Atomic Time (TAI) scale is based on the rate of time defined by the Syst6me

International (SI) second. Since 1967, the SI second has been the standard unit of time in all

timescales. The calibration study that utilized the ILE to define the SI second averaged the

cycles tabulated over 4 years from the cesium standard and compared them to the length of

the ET second.inl So, the SI second matches an ephemeris second very closely and provides
continuity between the ET and TAI timescales.lZl

The ILE is a classically derived hmar ephemeris, which is based on E. W. Brown's classical lunar

theory as derived from Newtonian gravitation. Brown's original theory as documented in his

memoirsl3,4,s,6,71 was finished before general relativity was published in 1916. General relativity

theories prior to 1950 using standard spherically symmetric metrics for a single mass produce

relativistic corrections well below the level of precision of the empirical corrections applied to

the ILE.ISI Therefore, relativistic corrections to the ILE were not considered necessary.

The very first version of ET was defined by Clemence, who used Newcomb's classical theory
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for the Tablesof the Sun from 1896.SinceEinsteinpublishedhisspecialand generalrelativity
theories in 1904and 1916,respectively,it is obviousthat ET had no intentional relativistic
correctionsincorporatedin the first ET timescale.From the observationalresultsof Spencer
Jones (1939),r91Ciemencederived the fluctuation factor A = ET - UT to convert UT to a

time measure defined by Newcomb's tables.II0! Because the year was so long, which then took

months after an event to determine ET, the Moon's orbit was the best object to study because
it had the shortest period. The best lunar theory available was Brown's methodical derivation.

But, Brown had to adopt an empirical term from other sources to get better agreement between

his hmar theory and the lunar observations used to get the constants of integration for his

theory. Clemence determined the correction to Brown's hmar theory so that the independent
time variable in the lunar theory would be the same as that in Newcomb's Table of the Sun.[lll

Following Clemence's comptitations published in 1948, the International Astronomical Union

agreed to remove Brown's empirical term and to rescale Brown's hmar theory by correcting
the mean longitude, L, with the following eqoation:

AL = -8.72" - 26.74"T- 11.22"T 2 = ALo + AnT + _AhT 2 (1)

where T is measured in Julian centuries from 1900 January 0 at Greenwich Mean Noon.

The equation to correct the mean longitude of the Moon can be considered a correction to

the mean motion rate of h by a value of Aft = -22.44"/ey2. This modification to the mean

longitude agreed with the observations of Spencer Jones (1939). Brown's hmar theory with this

correction to the mean longitude and a minor aberration correction term made tip the ILE
used to compute ET. Recently, Markowitz reportedlt21 that the SI second and the ILE second

were still consistent to a part in 101°, which effectively establishes that the SI and ET seconds
are equivalent.

Evidence of Timescale Problem

There has been considerable evidence of timescale inconsistencies between UT and ET.

Ephemeris timescales based solely on the orbital periods of the planets appeared to run
faster than UT. Data from Spencer Jones showed that the hmar orbital secular accelera-

tion was 5.22"/ep 2 = Ah M.... and the apparent secular acceleration of the solar orbit was

1.23"/e_/2 = Aft.s° .. Spencer Jones attributed the catise to tidal friction slowing down
Earth's rotational rate.1131 It also appears that Clemence computed the secular acceleration of

Earth's rotation, &, using the secular orbital acceleration of the Moon and Mercury to get
Aldotn = -11.22"/c92. Monk (1963) computed the sect, lar acceleration of Earth's rotation

from Spencer Jones' numbers with the following formula for the "weighted discrepancy dif-

ference," in which any dependence to a variable Earth rotation was removed.[141 The attempt
here was to extract the contribution due to any hmar errors in the timing problem from other

sources. So, the weighted discrepancy difference (WDD) is the weighted difference of the
secular orbital accelerations between the Moon and Sun that has not been accommodated in

the lunar ephemeris used for defining the lunar ET.
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(2)

dl2 WDD(t) = tim.... (t) - ( nM......_ its,,,(t ) = 5.22,,/ey2 _ 13.37(1.23"/cy 2) = -11.22"/cy '2 (3)
\ lZsm , /

Based on Clemence's results, WDD(t) could be computed by using Mercury instead of the

Sun. Munk assumed that WDD is due to the secular acceleration of Earth's rotation, which

will affect values of the independent variable t. He ruled out the alternative option, which is

tim ..... ynM..... y = hso, n s.... because these secular orbital accelerations are empirical and have no
explanation from classical gravitation theory. Lambeck did basically the same thing as Munk

using solar, Mercury and Venus data. [9,15,16,171 Using Spencer Jones' work plus three other

sources, Lambeck concludedIlS1

i_ .... i_ ..... ,, /t,, ..... (4)
T/,Sut, 7l Mercury T/'Vcnus

Again, Lambeck reached the same result as Munk and stated that the empirically derived
acceleration has to be caused by a secular deceleration in Earth's rotation as the only plausible

mechanism under classical theory.

All of these authors would get the same value for what is interpreted as the secular acceleration

of Earth's rotation, -11.22"/c92. Notice this is exactly the value for the quadratic term in the

equation used to correct Brown's lunar theory for the ILE. This value corresponds to a corrected
secular acceleration in the Moon's mean longitude of -22.44"/cy 2. A very recent observation

using hmar laser ranging gives -26.0"+ 1.0"/ey 2 for the Moon's secular acceleration. [191

When a divergence occurs between two time standards, either the first standard is running

slower than the second or the second standard is running faster than the first. All of the authors

mentioned in the previous section have identified that there is a timing problem between a

timescale based on Earth's rotation and ephemeris time. One option is that ET is running a bit

too fast, which could be caused by not including sufficient relativity corrections to lengthen the

time unit interval appropriately in the orbital equations of motion. The original ET standard
used Earth's orbit to measure one year, which was then divided into ephemeris seconds based

on the classically derived theory of the Sun. If the ephemeris second interval were a bit

smaller than the proper second interval in a relativistic theory, the ET standard would predict

that Earth would complete one entire orbit before Earth actually traveled 27r radians of mean

anomaly. Let M represent the observed mean anomaly and T, the orbital period of the Earth.

Then, AM = M- nT. As T = 27r/n, then AM = M- 27r. This discrepancy is often interpreted

as a secular acceleration, AM = 1- 2-_nT . If AM is caused by an annual, fixed timing error, AT,

then one may write AM = nAT. The correction between the secular acceleration, and the

timing error is given by

fi 2_T -constant (5)
n T 2
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Munk and others haveattributed the sourceof the problemto tidal friction that slowsdown
the Earth's rate of rotation,which thenmakesthe UT timescalerun slower,whereasthe above
ratiossuggestthat the timing problemis attributed to ET runningslightly fast. If thecomputed
ET is runningfasterthan the actualET,AM will be negative. This is confirmed when inserting
the negative value of h.

There has been a general divergence between UT and TAI timescales over the past 30 years.

Since the epoch for both UT and TAI is 0 hour of 1958 January 1, UT (as modeled by Universal

Coordinate Time UTC as based on the SI second) has trailed behind TAI by 29 seconds.1201

The leap seconds inserted into the UTC timescale, which closely follows UT, are plotted in

Figure 1. Leap seconds are inserted at midnight of either December 31 or June 30, depending
when it is decided that an update is needed.
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Looking at Figure 1, there is a periodic variation in the overall trend as UT and TAI steadily

diverge. Fluctuations in the Earth's rotation over timescales of less than a few years are

dominated by atmospheric effects, tZl,zz,z31 which affect the atmospheric angular momentum and

Earth's moment of inertia and rotation. The average leap second insertion-rates for three

recent intervals show the effect of the granularity in the data caused by the periodic behavior

of the atmosphere and the constraint of inserting leap seconds on the approved dates of June

30 and December 31. The three slopes can also be used to determine the excess length of a
mean solar day in terms of SI seconds.

Average Length of Mean Solar Day in SI Seconds
1992-1958 86400.00214

1993-1958 86400.00216

1994-1958 86400.00218

Subtracting 24 hours of seconds from the average length of day and then inverting gives the
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averageleap secondinsertion rate in daysasshownin the table below:

Average Leap Second Insertion Rate

1958-1992 466.6667 day/see

1958-1993 463.0357 day/see

1958-1994 459.6551 day/see

The intent of the cesium clock calibration experiment in 1958 was to calibrate the SI second

so that is would be as close as possible to the ET second. It is obvious from the figure that

the rates of UT and TAI do not match.

Relativity Effects on Time Standards

Relativity theory has shown that velocity and accelerations affect time, which classical physics

does not predict. Relativity requires that a distinction between proper time and coordinate time

be made. Proper time is the time kept by an ideal clock attached to the observer, much like a
wristwatch tells the observer his time. Coordinate time is equivalent to the instantaneous readout

of the master time standard, wherever it may be located, and the output time is communicated

instantaneously to the observer at his coordinate position. Any moving, accelerated observer

will have a slower proper time than if he was stationary and not gravitated. The Earth is not

only rotating, so that an observer on its surface experiences tangential rotational velocity and

centripetal acceleration, but it also has orbital dynamics that give Earth, as well as an observer
on its surface, additional velocity, centripetal acceleration and gravitational acceleration from

the Sun.

For the observer on Earth's geoid (surface where the sum of rotational centripetal acceleration

and local gravity from Earth is a constant), a timescale can be defined by Earth's rate of

rotation (e.g. UT). This standard does suffer from periodic variations in the atmospheric

angular momentum due to expanding and contracting air masses. In general, the rotational
time standard is fairly consistent and usable for timekeeping over the long term. Because Earth

experiences orbital dynamics and solar gravity, UT slows down (experiences the time dilations

that lengthen the second interval compared to operating at a stationary, nongravitated location
where no relativity effects exist). Therefore, UT is a proper timescale that has the same time

dilations as any fixed place on Earth. So, UT is actually a noninertial time standard, because

Earth's reference frame is accelerated.

Ephemeris Time is determined by an Earth observer viewing the position of a heavenly body,
like the Moon, and comparing it to a classically predicted orbital position. Postprocessing of

the equations of motion will produce a value of the time, a time tag, for the observed position,
which is used to define the timcscale for ET. With no relativistic perturbations included, the

predicted positions are appropriate only for a stationary, gravity-free observer. This is the

only location where proper and coordinate times are equivalent which constitutes what we call
inertial time. Such a time interval derived by only classical physics is as short as possible.

The equations of motion should be in terms of the observer's own reference frame, which

requires that the problem be treated relativistically. Classical equations of motion have no
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relativistictime dilationsso that theobserver'sreferenceframeis interpretedasbeingstationary
and nongravitated. The classicalequationsof motion establishan inertial time standard.
However,the Earth botmdobserverexperiencesorbital velocitiesand associatedaccelerations
that constitutea noninertialreferenceframeand a noninertialtime standard.So,the observers'
own proper time rate is slower than classicalphysicspredicts. The time tags given to the
observedangularposition of a heavenlybody is essentiallyequivalentto Earth's proper time,
namely UT. Since ephemeristime wasdefined with equationsof motion that assumedthe
observerwould be stationaryand nongravitated,the ET time intervalsare a bit short. This
wouldexplainwhy ET would run fasterthan UT over the long term.

Atomic time standards are defined to operate on Earth's geoid. The atomic clocks are at

the same location as the observer on Earth's surface, so that an atomic clock experiences the

same relativity effects as a clock in Universal Time.f241 However, atomic clocks were carefully

calibrated to match the rate of the ET timescale, which assumed an unaccelerated, stationary
frame for the observer. Thus, TAI and ET do not have the same common rate as the UT

timescale. Neither TAI, ET nor UT operate in an inertial reference frame. If the complete

relativity compensations were included in the lunar ephemeris, then the relationships between
these three time rates should be closer.

Noninertial Relativistic Metric and New Time Dilation Effects

Since the Earth and Moon define noninertial systems orbiting each other, then the choice

of a relativistic metric must accommodate all relativistic terms for a noninertial dynamical

system. Just as measurements taken in noninertial reference frames require that extra classical

terms (e.g. centripetal and Coriolis forces) must be taken into accotmt when transforming to
inertial frames, then relativistic measurements taken in a noninertial frame must have extra

correction terms that would not be found in an inertial frame. Many metrics, such as the

Schwarzschild metric, assume the massive object is stationary or nonrotating or inertial. The

Nelson metric is an exact, noninertial metric appropriate for a nongravitationally accelerated,

rotating reference frame.lZ51 Deines has extended the exact Nelson metric for nongravitationally

accelerated frames to include Newtonian gravity. The inclusion of the Newtonian gravity with

the nongravitational accelerations should encompass all significant relativistic terms to second

order, since the post-Newtonian approximation from general relativity has the Newtonian

gravity as the only second order contribution. The noninertial relativistic contributions are the

velocity factor from special relativity, the Newtonian gravitational term from the second order

post-Newtonian approximation from general relativity, and a new nongravitational potential
contribution that can be treated in general relativity as an effective pseudogravitational factor
to account for the centripetal acceleration. The new metric is defined below:

1 ifi=jgi.i = 6i._= 0 ifi_j (6)

1 -
.qoj = × ti) (7)
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is equivalent to 469.0343 days per leap second. This prediction is within 2% of the average
time between leap seconds accumulated between 1994 and 1958. It is also within 0.5% of the

observed average time between leap seconds if the average was taken between 1992 and 1958.

These preliminary computations indicate that a relativistic hmar ephemeris timescale may well

be close to UT.

Also, very preliminary calculations applied to the hmar ephemeris have been made with the

time dilation equation. When the total relativistic contributions as calculated to second order

are not accommodated in the hmar ephemeris, an apparent secular acceleration in the hmar

orbit of --25.66"/('Y 2 is predicted, which is about 1.3% of the observed value.

Conclusion

As discussed already in this paper, astronomers and geophysicists have, for many years, identified

a timescale divergence between Universal Time (UT) and Ephemeris Time (ET). This problem

has carried over to the observed divergence between UT and International Atomic Time (TAI),

which the latter timescale has a rate defined by the current SI second that was calibrated

carefully to the ET second. Previous scientific opinions are that UT is slowing down due to
tidal friction. An equally plausible option is that ET had been running slightly faster than UT.

The lack of a physical cause has kept this option from serious consideration until now.

An in-depth study of the historical development of our ctlrrent timescales reveals that the

equations of motion that defined the former standard of Ephemeris Time did not include

any relativity compensations. Since ET is based on the length of the yearly orbit that was

subsequently divided into ET seconds as prescribed by those equations of motion, the ET
timescale could be running slightly faster than Earth's proper time standard. Without the

relativistic time dilation effects that would "stretch" the ET second slightly, there will be slightly

more seconds marked off per year than there should be. In that case, time predictions based on

a complete revolution will be ahead compared to when the heavenly body will actually complete
an orbit. Studies have shown the planets all lag behind the ET predictions with equal ratios of

mean motion rate divided by mean motion. Classical gravitational theory can not explain the

existence of these empirical ratios. However, relativity seems to be a possible source of this

phenomena.

Because the Earth and Moon are not sufficiently inertial, a relativistic metric that deals

with a generalized noninertial reference frame has been developed. Deines has extended
the noninertial Nelson metric with Newtonian gravity to satisfy the requirement for modeling

a noninertiai system in gravity. In noninertial reference frames, three sets of relativistic

contributions occur: velocity, gravitational and nongravitational terms. Preliminary research

indicates the new relativistic metric will give an updated, theoretical expression for the lunar

mean motion and, thereby, a new effect on the lunar timescale to be used for ET. A new time

dilation equation has been derived from this new metric and has been used to estimate the time

dilation effects of Earth's proper time compared to an inertial coordinate time. Assuming UT

typifies Earth's proper time and assuming TAI with the SI second establishes Earth's coordinate

time, then the time dilation equation predicts that UT should trail behind TAI by .7787481

seconds per year, which is within 2% of the observed divergence between UT and TAI. Also,
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X.fi+q,)2goo -- 1 -4- e2 + c2 (8)

where A is the time-dependent translational, nongravitated acceleration of the observer's

frame relative to a nongravitated inertial frame, _ is the Newtonian gravitational potential

independently existing in the neighborhood of the observer, a5 is the time-dependent angular

velocity vector of the observer's spatial frame rotating relative to the inertial frame, and /t is
the range vector of the accelerated observer's origin from the inertial frame.

Using the fact that the Nelson metric preserves flat space-time, Deines has rigorously de-
rived a new time dilation equation for a rotating reference frame that is accelerated both
nongravitationally and gravitationally.

+c 2] dt (9)

with 17 being the time-dependent velocity of the observer's frame relative to the inertial frame.

If proper time _- is associated with UT as Earth's proper time and coordinate time t is considered

as TAI with its SI second, then the square root term is the time dilation factor between the
UT and TAI seconds.

To estimate the expected time dilation of Earth in its orbit around the Sun, integrate the
time dilation equation over one year by the following process. Assume the inertial frame is

sufficiently far from the Sun as to experience no gravitational red shift with its ideal master

clock (e.g. fixed somewhere on the celestial sphere). Draw the displacement vector /t from

the inertial frame to the barycenter located at the Sun and continue on to the Earth-Moon

barycenter. Since the first leg of this vector sum is fixed and assumed sufficiently stationary,

the problem now reduces by a transformation to evaluating the time dilation equation from

the Sun to Earth. Expand the radical in powers of c2 and retain only the first order terms.

Assume Earth's orbit is a perfect ellipse. Substitute the Newtonian potential with the classical

representation of the reduced mass divided by the new /_ vector. Derive the expression for the

centripetal acceleration due to the elliptical orbit and substitute directly for the dot product

term. Give I/'2 its value for elliptical orbits. Obtain the differential form of Kepler's equation
to express dt as a fimction of dE where E is the eccentric anomaly.

Collect terms as a fimction of E and integrate over 2r radians for one anomalistic year (i.e.

perigee to perigee or 365.259635 days) to get the effective rate difference between proper and
coordinate time as given below:

7"--t
/Z _ f2_"

2oc V J0 + cos -
seconds per anomalistic year

_'¢_5E o2_=-0.778748084 (10)
2c 2

The result from this integration is that UT will trail TAI by .7787481 seconds in one year, which
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verypreliminarycomputationsusingthis time dilation equationindicatethat the total relativity
effectswhen ignored can producean apparenthmar accelerationof -26.66"/ey2, which is
within 1.3%of the currentobservedvalueof the hmar secular acceleration in mean longitude.

Our future research work will generate a relativistic hmar ephemeris by following Brown's

methodical development and using the new noninertial metric. The ongoing project will compare

the original ephemeris timescale to a relativistic one. It is expected that the comparison will

match the comparison between UT and TAI. One outcome of this effort may be the precise

determination of a UT timescale by an appropriate conversion factor applied to an atomic

timescale based on the SI second. This could allow an ultraprecise definition of a new UT

timescale free of any leap second insertions.

This research effort is funded by the Office of Naval Reseearch contract N00014-94-1-1021.
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